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« Previous sessions:

> MR signal detection (Chap.7)
= T2* (Chap.8)

- Today’s content

- Signal and effective spin density
= Frequency encoding and 1D Fourier transform
= Gradient echo

= k-Space



Signal and Effective Spin Density
* o(7) = y(By + AB(P))
 Local, microscopic field inhomogeneity T2*

- With an globally well-defined spatial field variation (e.g.
linear gradient field), spatial information can also be
represented as frequency components

- MR Imaging is to reconstruct the spatial distribution of
the sample spin density from such signal encoded with
spatial information




Signal and Effective Spin Density

- Effective spin density

S(t) = [ d3rp(P)el@+EFD) (refrq.7.28)
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p(r) = woAB My (r) = ZwOAB_LPO () By

= A represents the total effects from electronic detection system

= All ‘fields’ are considered spatially and temporally homogeneous, and
relaxation effects are ignored

= Effective spin density is proportional to actual proton density of the
sample, while being modulated by many factors

= For convenient, we’ll simply use ‘spin density’ for p(7)



Fourier Transform

» Definition
FTIf(0)] = F(k) = j dxf (x)ei2mkx
IFT[F(k)] = f(x) = f dkF (k)e 2k

x and k are Fourier conjugates, representing a pair of FT domains

Example:

Time (t) Frequency (f)
Distance (x) Spatial Frequency (1/x)

Property:
f(x) = IFT[FT[{(x)]]



Frequency encoding
- Goal of MR imaging:

Determine the spatial distribution of (effective) spin

density of the sample

e Means:

Spatially encodes the (effective) spin density by a linearly
varying field, e.g. G, () B,/ 1z, so that:

B,z ,t) = By + 2Gz(t)

W,z t) = YB,z, t) = Wy +v2G, (1)

ﬂ Rotating frame

t
bez, t) = —)/Zf dt'G(t)
0

The use of a gradient to establish a
relation between the position of
spins along some direction and
their precessional rates is referred
to as frequency encoding along
that direction




Frequency encoding

- Signal at the presence of G,(t)

s(t) = f dzp(z)e P

=f de(Z)e_iznz(" fot dt'G(t")

t
k(t) O :yf dt'G(t"))
0

S(k)=f de(Z)e_iznZk :> p(Z)=f dks(k)e+i2nzk

Fourier
transform

Invert Fourier
transform




Consider:
Two spins at z1 and z2, but

F re q uen Cy enco d i N g with precessing freq difference

greater than G|z1-z2|




What Is k-space?

- A mathematically defined Fourier space for the spatial

frequency (how come?)
t

k(t) O yj dt'G(t"))

0

- Each S(k) contains signal contribution from all excited
spins in the sample, albeit the contribution is weighted
by spin density and phase

s(k)=/ dzp(z)e™*"*



Dirac Delta Function

([ §(z-a)=0, zZ#a
4

a+e
f dZ5(Z—a)=1’ c->0
\ a—e&

 Properties
j dz6(z —a)f(z) = f(a)

6(z—a) = j dk e'?mk(z=a) = IFT[e‘iZ”’R

FT[5(Z . a)]= e—i2nka

Note the
periodicity
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Pencil model i
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physical image profile
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p(2) = Sy ) 8z = 20)]
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(Fig.9.7)
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So why Gradient Echo?

- Recover signal from fast T2* decay due to gradients
« Reduce filtering effects (Chap. 13)




So why Gradient Echo?

- Full k-space coverage (Cartesian)
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Spin Echo 1D k-space
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Homework
e« Prob.9.1,9.2,94,95

Next Class

Chapter 10.1-10.4



