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• Previous sessions:

▫ MR signal detection (Chap.7)

▫ T2* (Chap.8)

• Today’s content 

▫ Signal and effective spin density

▫ Frequency encoding and 1D Fourier transform

▫ Gradient echo 

▫ k-Space



Signal and Effective Spin Density
• ω Ԧݎ ൌ ଴ܤሺߛ ൅ Ԧሻሻݎሺܤ∆

• Local, microscopic field inhomogeneity T2*

• With an globally well-defined spatial field variation (e.g. 
linear gradient field), spatial information can also be 
represented as frequency components

• MR Imaging is to reconstruct the spatial distribution of 
the sample spin density from such signal encoded with 
spatial information



Signal and Effective Spin Density

• Effective spin density
ܵ ݐ ൌ Ԧሻ݁௜ሺஐ௧ାథݎሺߩݎଷ݀׬ ௥Ԧ,௧ ሻ ሺref	Eq.	7.28ሻ

ߩ Ԧݎ ≡ ߱଴Λࣜୄܯ଴ Ԧݎ ൌ
1
4߱଴Λࣜୄߩ଴ Ԧݎ

ଶ݄ଶߛ

݇ܶ ଴ܤ

▫  represents the total effects from electronic detection system
▫ All ‘fields’ are considered spatially and temporally homogeneous, and 

relaxation effects are ignored
▫ Effective spin density is proportional to actual proton density of the 

sample, while being modulated by many factors
▫ For convenient, we’ll simply use ‘spin density’ for ߩ Ԧݎ



Fourier Transform
• Definition

ሻሿݔሾ݂ሺܶܨ ൌ ܨ ݇ ൌ න݂݀ݔሺݔሻ݁ି௜ଶగ௞௫

ሺ݇ሻሿܨሾܶܨܫ ൌ ݂ ݔ ൌ න݀݇ܨሺ݇ሻ݁௜ଶగ௫௞

x and k are Fourier conjugates, representing a pair of FT domains 

Time (t) 　Frequency (f)
Distance (x) 　Spatial Frequency (1/x)

Example:

Property:

f(x) = IFT[FT[f(x)]]



Frequency encoding
• Goal of MR imaging: 

Determine the spatial distribution of (effective) spin 
density of the sample

• Means:
Spatially encodes the (effective) spin density by a linearly 
varying field, e.g. Gz(t)　　Bz/　z, so that:

ݖܤ ,ݖ ݐ ൌ 0ܤ ൅ ሻݐሺݖܩݖ

ݖ߱ ,ݖ ݐ ൌ ݖܤߛ ,ݖ ݐ ൌ ߱0 ൅ ሻݐሺݖܩݖߛ
The use of a gradient to establish a
relation between the position of
spins along some direction and
their precessional rates is referred
to as frequency encoding along
that direction߶ܩ ,ݖ ݐ ൌ െݖߛන ሻ′ݐሺܩᇱݐ݀

௧

଴

Rotating frame



Frequency encoding

• Signal at the presence of Gz(t)

ݏ ݐ ൌ න݀ߩݖሺݖሻ݁௜థீሺ௭,௧ሻ

ሻ݁ି௜ଶగ௭ሺఊݖሺߩݖ݀׬= ׬ ௗ௧ᇲீሺ௧ᇲሻሻ೟
బ

sሺkሻൌ׬dzρሺzሻeି୧ଶ஠୸୩

݇ ݐ ߛ	□	 න ሻሻ′ݐሺܩᇱݐ݀
௧

଴

Fourier 
transform

ρሺzሻൌ׬dksሺkሻeା୧ଶ஠୸୩

Invert Fourier 
transform



Frequency encoding

0 z-2z -z z 2z
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=Gzt
= (z)t

Consider:
Two spins at z1 and z2, but 
with precessing freq difference 
greater than G|z1-z2|

B



What is k-space?
• A mathematically defined Fourier  space for the spatial 

frequency (how come?)

݇ ݐ ߛ	□	 න ሻሻ′ݐሺܩᇱݐ݀
௧

଴
	

• Each S(k) contains signal contribution from all excited 
spins in the sample, albeit the contribution is weighted 
by spin density and phase

sሺkሻൌ׬dzρሺzሻeି୧ଶ஠୸୩



Dirac Delta Function

൞
ߜ ݖ െ ܽ ൌ 0, ݖ	 ് ܽ

න ߜݖ݀ ݖ െ ܽ ൌ 1, ߝ → 0
௔ାఌ

௔ିఌ

• Properties
න ߜݖ݀ ݖ െ ܽ ݂ ݖ ൌ ݂ሺܽሻ
ஶ

ିஶ

ߜ ݖ െ ܽ ൌ න ݀݇	݁௜ଶగ௞ሺ௭ି௔ሻ
ஶ

ିஶ
ൌ ሾ݁ି௜ଶగ௞௔ሿܶܨܫ

ߜሾܶܨ ݖ െ ܽ ሿ= ି௜ଶగ௞௔
Note the 

periodicity



Two spin 
example analysis

(Fig.9.1)

ݏ ݐ ൌ ܵ଴ ݁ି௜ఊீ௭଴௧ ൅ ݁௜ఊீ௭଴௧
ൌ 2ܵ଴cos	ሺݐ0ݖܩߛሻ

ݏ ݇ ൌ 2ܵ଴cos	ሺ20ݖ݇ߨሻ

ߩ ݖ ൌ න ݀݇2ܵ0cos	ሺ20ݖ݇ߨሻ݁௜ଶగ௞௭
ஶ

ିஶ

										ൌ ܵ0න ݀݇
ஶ

ିஶ
ሺ݁௜ଶగ௞ ௭ା௭଴ ൅ ݁௜ଶగ௞ሺ௭ି௭଴ሻሻ

										ൌ ܵ0ሾߜ ݖ ൅ 0ݖ ൅ ݖሺߜ െ 0ሻሿݖ



Pencil model

ߩ ݖ ൌ ܵ0 ݖ ሾ	෍ߜሺݖ െ ሻ݅ݖ
௜

ሿ

(Fig.9.7)



Gradient Echo

(Fig.9.2)

Excitation pulse

Read gradient

Pre-phase 
gradient

Rule of thumb:
• Net Read gradient moment (i.e. 

is zero at the echo center (ݐܩ׬



So why Gradient Echo?
• Recover signal from fast T2* decay due to gradients
• Reduce filtering effects (Chap. 13)

T2

T2*
w/ G

T2*



-kmax 0                                        kmax

So why Gradient Echo?
• Full k-space coverage (Cartesian)

െ݇݉ܽݔ ൏ ݇ ൏ ݔܽ݉݇

Fig 9.4

FID
(Half Fourier)

GE

Fig 9.3

݇ ݐ ߛ	□	 න ሻሻ′ݐሺܩᇱݐ݀
௧
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Spin Echo 1D k-space

Fig 9.6

Fig 9.5

Fig 9.4



Homework

Chapter 10.1-10.4

Next Class

• Prob. 9.1, 9.2, 9.4, 9.5 


